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APPENDIX: INTEGRAL ANALYSIS 

An integral of momentum equation (12) between limits 
zero to co gives 

(Al) 

Introducing a function @ such that 

4(O) = 0, &co) = 1. 

The momentum integral (Al) yields 

AZ = 4’(O)/[B, -B,-@, -2B,)] (A3) 

where 

s 

1. 
3, = I-d,d[, B2 = 

0 f 
0m cb-Pdi. 

Using the above results it can be shown that 

f”(0) = (2E- l~[#‘(O)(~, -B,-E(B, -2&,))j”2 

b = (2E- I)B,A. (‘44) 
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The relation (A4) shows that a solution does not exist for 
E > Em where s0 is given by 

Eg = l+(H-2)-l (A5) 

where H = PI/B2 is the shape factor (H > 2, Eg > 1). 

If one considers a trial velocity profile 

cb(i) = (31;-1?/2+ i $ 1; #4L’l = 1, i > 1 
B, = 3j8, Bz = 39/280 

then .Q = 2.46 and the solution is given by 

r(O) = (2s-- 1)(0,3536-0.1446~)“~ 

and for the trial profile 

(A61 

9(1)=2i-21’+14. ict; $J(i)=1, c>r 

B, = 3/10, BZ = 37/315 

c0 = 2.8 1 and the solution is given by 

f”(0) = (2~- 1)(0.365-0.130~)“~. (A7) 

The expression (A7) includes the two results (10) and (18) 
of ref. [2] as special cases. These solutions are good for E < 1 
as for E = 1 the error is about 2% and F = 0 the error is 
about 5%. As E + - r*), the asymptotic behaviour of integral 
solution (A7) leads to 

f”(O) -+ -0.72(-E)“’ 

h-t -0.83(-&)“2. (A8f 
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INTRODUCTION 

HONEYCOMB structures are often used in thermal insulating 
walls. Inside such walls, the main mechanisms of heat trans- 
fer are by natural convection and radiation. A number of 
studies for natural convection heat transfer in such an air 
layer were investigated by Asako et al. [l-3]. If the air layer 
is filled with thermal insulations, such as glass wool, both 
convective and radiative heat transfer rates will decrease. 
A numerical analysis was reported by Asako et al. [4] to 
investigate heat transfer characteristics by natural con- 
vection in such a porous layer. The results were obtained for 
both conductive and adiabatic honeycomb core wall thermal 
boundary conditions. These condi~ons exist when the honey- 
comb core walls are good conductors and thick, and also 

when they are thermally insulated. For thermal insulating 
walls, it is required to reduce the heat loss through the honey- 
comb core walls. Then, the honeycomb core walls should be 
made as thin as possible to reduce the heat conduction 
through it. The motivation for the present study is to analyse 
the case where the honeycomb core walls are assumed to 
be poor conductors and thin, such that the thermal wall 
boundary conditions approach the so-called ‘no-thickness’ 
wall boundary condition dictated by Nakamura et al. [5]. 
These three boundary conditions, ‘conduction’, ‘adiabatic’, 
and ‘no-thickness’, can be considered as three idealized ther- 
mal boundary conditions. Therefore, the heat transfer rate 
in a practical porous layer will have a value that lies within 
these three conditions. 

The numerical methodolo~ used in this study utilizes an 
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FIG. 1. Schematic diagram of a vertical porous layer with 
honeycomb core. 

algebraic coordinate transformation technique developed by 
Faghri et a/. 161, which maps an irregular cross-section into 
a rectangle. This method was extended to three-dimensional 
problems by Asako et al. [I]. In this note, the flow is obtained 
using the Darcian model, and the porous layer is assumed to 
be homogeneous and isotropic. The numerical solutions were 
obtained for a range of the Darcy-Rayleigh numbers from 
10 to 1000 and for a range of aspect ratios from 0.25 to 
5. Unfortunately, no experimental results are available for 
comparison with the present work. However, the results of 
this work are compared with the corresponding values for 
two-dimensional rectangular enclosures. 

FORMULATION 

Description of the prabiem 
The problem considered in this study is schematically 

depicted in Fig. t. it involves the determination of three- 
dimensional heat transfer for natural convection in a vertical 
porous layer with a hexagonal honeycomb core. Ifthe porous 
layer is very long and wide in both the vertical and the 
horizontal directions, the velocity and temperature fields 
repeat themselves in successive enclosures except at the end 
boundaries of the layer. Therefore, it is possible to solve the 
natural convection problem in only one hexagonal honey- 
comb porous enclosure with an appropriate thermal boun- 
dary condition. As seen in Fig. I, the two hexagonal end 
walls of the enclosure are kept at uniform temperatures rn 
and I~, respectively. The honeycomb core walls (the side 
walls) can be modeled as poor conductors and thin. The 
geometry of the problem is specified by the height (H) and 
the length (Q The solution domain, with the assumption of 
symmetry, is confmed to the right half of the honeycomb 
enclosure. The mathematical expression for the width of this 
honeycomb, 6(y), is given in an earlier paper by Asako et 
al. [I]. 

The conservation equations 
The governing equations are the continuity and energy 

equations. The flow field is approximated by the Darcian 
model. Constant the~ophys~~l properties are assumed 
except for the density in the buoyancy force term. The fol- 

lowing dimensionless variables are used : 

x = x/L, Y = y/L, 2 = z/L, 

u = u/(a/L). v = t/(aiL). W = w/(a/L). 

P = pWv, T= (t-tt,)l(trr-ttc)~ 

Ra* = K9p,L(t,, - &)/a~ (1) 

where t, is the average temperature of the end walls and is 
expressed by t, = (tN+ t&2. Then, upon introduction of 
dimensionless variables and parameters, for steady natural 
convection in a porous medium, the governing equations 
take the following forms : 

au/aX+av/aY+aw/az = 0 (2) 

u = -3Pj6X (3) 

V = -PP/i?Y+ Ra* T (4) 

w = -2P/Z (5) 

u(aTl’ax) + v(aT/a Y) + w(a?-/az) = VT (6) 

where 

572, i3Zl(ix2+a2/aY2+d2/dZ?. (7) 

To complete the formulation of the problem, the necessary 
boundary conditions are discussed below 

at ail walls : V - N = 0 

and at the symmetry plane (X = 0) : 

u=avjex=awjax=o. (8) 
Here, V and N are the velocity vector and the normal vector 
to the walls, respectively. The non-permeable boundary con- 
dition is attributed to the wall. Therefore, the thermal boun- 
dary conditions on the hot and cold wails reduce to 

hot wall : T = 0.5 

cold wall : T = -0.5. (9) 

The thermal boundary condition for the side walls is the 
‘no-thickness’ wall condition, which assumes that con- 
duction is negligible along the walls (the horizontal direc- 
tion), because they are thin. Therefore, the heat flux through 
the top wall (AGLF) becomes equal to that through the 
bottom wall (CIJD) ; the heat flux through one of the upper 
side walls (ABHG) becomes equal to that through the lower 
side wall (EDJK). From the assumption of symmetry, the 
heat flux through the right upper wall (FEKL) becomes equal 
to that through the left side wall (ABHG). The mathematical 
expressions for these conditions are expressed as follows : 

T - T’m AGLF - (aT,@iV) AGLF = - (w@J)r,JD 

TEW = TEDIK, (ariawE,,, = -w~w~~,~. (10) 

Here, N is the dimensionless coordinate directed along the 
outward normal to the walls. 

Numerical methods 
A simple algebraic coordinate transformation is used 

which maps the hexagonal cross-section onto a rectangle. 
Specifically, the X, Y coordinates are transformed into n, { 
coordinates by the following relations : 

9 = XIWWL], c= Y. (11) 

In terms of the new coordinates, the solution domain is 
defined by 0 < ?J < 1,O < r < H/L. The transformed equa- 
tions, their discretization and solutions, are documented in 
an earlier paper by Asako et al. [4]. The discretized equations 
for the thermal boundary conditions and their numerical 
implementation have been documented in an earlier paper by 
Asako et al. [2]. The discretized procedure of the equations is 
based on the control volume technique, using the power-law 
scheme of Patankar 171, and the discretized equations are 
solved by using a line-by-line method. The pressure and 
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FIG. 2. Heat flow through the side wall for Ra* = 100 : (a) top wall for H/L = 1; (b) top wall for H/L = 2 ; 
(c) upper side wall for H/L = 1 ; (d) upper side wall for H/L = 2. 

velocities are linked by the SIMPLE algorithm of Patankar 
[8]. Note that the SIMPLE algorithm for the pressure- 
velocity linkage for the Darcian model can be considered 
as an implicit method rather than a semi-implicit method. 
Because of this, a good convergence was obtained. 

The computations were performed with (16 x 22 x 22), 
(16~3Ox30),and (16x40x40)gridpoints,for~a*= 10, 
100 and 1000, respectively. The grid points were unifo~Iy 
distributed in the 9 and 5 directions, but non-uniformIy in 
the 2 direction with a higher concentration near the hex- 
agonal end walls. The effect of grid size on the Nusseh 
number has already been examined and illustrated in the 
previous paper by Asako ef al. (41. 

From an examination of the governing equations (2)-(6), 
it can be seen that there is only one flow parameter whose 
value has to be specified prior to the initiation of the numeri- 

cal solution. This is the Darcy-Rayleigh number, Ra*. In 
this paper, the values chosen for this parameter are in the 
range from 10 to 1000. Aside from Ra*, there are two geo- 
metric parameters which have to be specified. These are the 
height (H) and the length (L) of the enclosure. If L is used 
as a reference length, then H/L needs to be specified as the 
geometric parameter. The selected values for H/L were 0.25, 
0.333,0.5,0.7, I, I .4,2 and 5, respectively. 

NIKW~I numbers 
The local and average heat transfer coefficients on the hot 

wall are defined as 
h = q/(&t - rc) (12) 

h, = Ql[Adt,- k)l (13) 

where q is the local heat flux, A, the area of the hexagonal 
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FIG. 3. Local Nusselt number on the hot wall for Ra* = 1000: (a) H/L = 0.5; (b) H/L = I ; (c) H/L = 2; 
(d) H/L = 5. 
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hot wall equal to (3/2)H’ tan (x/6) and Q the total heat 
transfer rate from the hot wall. The expressions for the Nus- 
selt number are given below 

NU = hL/k = - (aT/aZ),, 

11.1 I 
Nu,, = h,L:‘k = -2 

il 
(aT/c?Z),(s/L) dr/dt 

0 0 

(14) 

/[(3/2)(/I/L)* tan (n/6)]. (15) 

RESULTS AND DISCUSSION 

Heal flux [hrough side walls 
The heat flux through the top side wall (AGLF) and the 

upper side wall (ABHG) are presented in Figs. 2(a) and (c), 
respectively, for H/L = I and Ra* = 100, and in Figs. 2(b) 
and (d) for H/L = 2 and Ra* = 100. As seen from these 
figures, the dimensionless value of the heat flux, (-aTjaN), 
always takes a positive value. This indicates that the direction 
of the heat flow which passes through the top and upper side 
walls is upward. The value of (-aTjaN) increases with 
increasing aspect ratio. 

Local Nusselt number 
The local Nusselt numbers on the hot wall for Ra* = 1000 

are presented in Fig. 3. In this figure, the Nusselt numbers 
for the aspect ratios 0.5, 1,2, 5 are shown in (a), (b), (c) and 
(d), respectively. The local Nusselt numbers for H/L = 0.25 
approach unity. and in the case of a low aspect ratio 
(H/L = 0.5), the local Nusseh number takes the highest value 
on the symmetry line. The Nusselt number profile changes 
with increasing values of the aspect ratio and it has two peaks 
which move to lower corners of the hot wall with increasing 
aspect ratios. 

Average Nusselt number 
The average Nusselt numbers, Nu,, are plotted as a func- 

tion of the aspect ratio, H/L, with the Darcy-Rayleigh num- 
ber as a curve parameter in Fig. 4. The values of Nu, for 
Ra* = 10 approach unity and are not plotted here. The 
Nusselt numbers for conductive and adiabatic side wall con- 
ditions are also plotted in this figure. As seen from this 
figure, the Nusselt number for the ‘no-thickness’ boundary 
condition takes a value between the values for conductive 
and adiabatic side wall boundary conditions. 

The dashed lines in the figure are the result for a two- 
dimensional rectangular enclosure of height H and hori- 
zontal length L. The full three-dimensional computation 
requires excessive commuting time. Therefore, it would be 
helpful if the average Nusselt number could be predicted 
from the result of a two-dimensional model. To investigate 
this, supplementary two-dimensional computations were 
performed with (40 x 40) grid points for Ra* = 1000 and 
(30 x 30) grid points for Ra * = 100, respectively. The grid 
point distribution is similar to those used for three-dimen- 
sional computations. Namely, the grid points were dis- 
tributed uniformly along the vertical Y-direction, while non- 
uniformly along the horizontal Z-direction, with a higher 
concentration of the grid points near the hot and cold walls. 
Slight differences between a two-dimensional rectangular 
enclosure and the honeycomb enclosure can be seen in the 
figure for Ra* = 1000 and for the lower aspect ratios. 

CONCLUDING REMARKS 

Three-dimensional natural convection heat transfer 
characteristics in a porous layer with a hexagonal honey- 
comb-core structure, of negligible thickness, have been 
obtained numerically by a coordinate transformation tech- 
nique. The computations are performed for Darcy-Rayleigh 
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FIG. 4. Average Nusselt number, Nu,, as a function of the 
aspect ratio, H/L. 

numbers in the range of 10~1000 and for eight values of 
aspect ratio. The main conclusions are : 

(a) the heat passes upward through the honeycomb core 
walls, 

(b) the average Nusselt number for the ‘no-thickness’ 
boundary condition takes a value between those for the 
conductive and the adiabatic side wall thermal conditions, 
and 

(c) the average Nusselt number can be predicted by a two- 
dimensional rectangular result, depending on the aspect ratio 
and the Darcy-Rayleigh number. 
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